Bilateral attention network for semantic segmentation
نویسندگان
چکیده
Enhancing network feature representation capabilities and reducing the loss of image details have become focus semantic segmentation task. This work proposes bilateral attention for segmentation. The authors embed two modules in encoder decoder structures . Specifically, high-level features structure integrate all channel maps through dense relationships learned by correlation coefficient module. positively correlated channels promote each other, negatively suppress other. In structure, low-level selectively emphasize edge detail information map position expression is improved fusion to obtain more accurate results Finally, verify effectiveness model, conduct experiments on PASCAL VOC 2012 Cityscapes scene analysis benchmark data sets achieve a mean intersection-over-union 74.92% 66.63%, respectively.
منابع مشابه
Fast Bilateral Solver for Semantic Video Segmentation
We apply the fast bilateral solver technique to the problem of real-time semantic video segmentation. While structured prediction by a dense CRF is accurate on video datasets, the performance is not adequate for real-time segmentation. We hope to utilize the efficient smoothing methodology from the fast bilateral solver within the video segmentation framework introduced by Kundu et al. [9], imp...
متن کاملSemantic Segmentation with Reverse Attention
Recent development in fully convolutional neural network enables efficient end-to-end learning of semantic segmentation. Traditionally, the convolutional classifiers are taught to learn the representative semantic features of labeled semantic objects. In this work, we propose a reverse attention network (RAN) architecture that trains the network to capture the opposite concept (i.e., what are n...
متن کاملStacked Deconvolutional Network for Semantic Segmentation
Recent progress in semantic segmentation has been driven by improving the spatial resolution under Fully Convolutional Networks (FCNs). To address this problem, we propose a Stacked Deconvolutional Network (SDN) for semantic segmentation. In SDN, multiple shallow deconvolutional networks, which are called as SDN units, are stacked one by one to integrate contextual information and guarantee the...
متن کاملImproving Fully Convolution Network for Semantic Segmentation
Fully Convolution Networks (FCN) have achieved great success in dense prediction tasks including semantic segmentation. In this paper, we start from discussing FCN by understanding its architecture limitations in building a strong segmentation network. Next, we present our Improved Fully Convolution Network (IFCN). In contrast to FCN, IFCN introduces a context network that progressively expands...
متن کاملDecoupled Spatial Neural Attention for Weakly Supervised Semantic Segmentation
Weakly supervised semantic segmentation receives much research attention since it alleviates the need to obtain a large amount of dense pixel-wise ground-truth annotations for the training images. Compared with other forms of weak supervision, image labels are quite efficient to obtain. In our work, we focus on the weakly supervised semantic segmentation with image label annotations. Recent pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Iet Image Processing
سال: 2021
ISSN: ['1751-9659', '1751-9667']
DOI: https://doi.org/10.1049/ipr2.12129